

Factsheet

Demosite afvalwaterzuiveringstechnologie Leeuwarden

Influent		CZV	BZV	KjN-N	NH4-N	P	BEZ	Cl	рН	Debiet
mident		mg/l	mg/l	mg/l	mg/l	mg/l	ml/l	mg/l		m³/d
	Gewogen									
	gemiddelde	505,6	212,4	44,4	28,5	8,4	8,7	219		35.227
	Maximum	870,0	420,0	73,0	49,9	16,0	20,0	580	8,6	138.090
	Minimum	140,0	58,0	11,8	7,9	2,2	1,6	92	7,3	15.550
				Altonomore	de years at the second		.,,		,,5	13.330
BUS STATE OF THE		CZV	BZV	KjN-N	NH4-N	NO2-N	NO3-N	N	Р	ZS
Effluent		mg/l								
	Gewogen		mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
	gemiddelde	39,2	2,6	2,8	1,2	0,08	1,0	2.0	0,82	ارء
	Maximum	55,0	11,0	6,7				3,9		5,4
					4,6	0,37	2,6	8,7	2,60	29,0
	Minimum	24,0	1,0	1,1	0,1	0,15	0,2	1,6	0,10	2,0
		0.57			2.14					
Effluent		BEZ	Cl	рН	Debiet					
		ml/l	mg/l	<u> </u>	m3/d					
	Gewogen		400							
	gemiddelde	0,1	199		45555					
	Maximum	0,2	360	8,3	138.090					
Minimum		0,1	86	7,2	15.550					
		Tempera-	Zwevende	Gloeirest	SVI	N-Kj	Ptot	CZV		
Actief slib		tuur	stof							
		°C	g/l	%	ml/g	mg/kg	mg/kg	g/kg		
	Rekenkundig									
	gemiddelde	14,9	4,0	27	130	63382	30176	61		
	Maximum	23,4	5,1	32	171	80800	40000	75		
	Minimum	6,6	2,9	20	79	49300	27000	24		
		gNEN-EN	gNEN-EN	NEN	NEN	NEN	NEN	NEN-ISO	NEN	
		12880	12879	6964	6966	6966	6966	16772	6966	
Uitgegist slib		DS	GI.Rest	As	Cd	Cr	Cu	Hg	Pb	
Ortgegist sii		(%)	(%)	(mg/kg ds)	(mg/kg ds)	(mg/kg ds)	(mg/kg ds)	(mg/kg ds)	(mg/kg ds)	
	Gemiddelde	4,7	44,0	20,8	1,0	42,0	288	0,3	90	
	Standaarddeviatie	0,2	1,1	5,7	0,2	2,4	15,0	0,0	14,7	
	Minimum	4,3	42,6	14,0	0,8	40,0	270	0,3	75	
	Maximum	4,9	45,3	26,0	1,2	45,0	300	0,4	110	
				facilia 1						
		NEN 6966	NEN 6966	NEN 6966	NEN 6966	NEN 6966	NEN 6966	NEN 6966		
Uitgegist slib		Ni (mg/kg	Zn	Fe	Al	Ba	Co	Mn		
Oitgegist sii		ds)	(mg/kg ds)	(mg/kg ds)	(mg/kg ds)	(mg/kg ds)		(mg/kg ds)		
	Gemiddelde	25,8	638	58.000	6.200	172,5	4,3	1.550		
	Standaarddeviatie	2,5	38,6	6.683	542	15,0	0,4	614		
	Minimum	23,0	600	52.000	5.800	160	3,8	800		
	Maximum	29,0	680	67.000	7.000	190	4,7	2.100		
								Manager		
		NEN 6966	NEN 6966	SPV A019	SPV A019	SPV A005	SPV A009	SPV A028		
		Mo	V	7 PCB's	20 OCB's	VROM10	N-Kj	D D		
Uitgegist sli	D		(mg/kg ds)	(ug/kg ds)	(ug/kg ds)	(mg/kg ds)		(mg/kg ds)		
	Gemiddelde	3,3	19,8	13,2	26,3	0,5	80.225	39.750		
	Standaarddeviatie	-,-	1,3	7,5	7,4	2,2	9.395	2.363		
	Minimum	3,3	18,0	5,9	19,0	0,5	69.700	38.000		
	Maximum	3,3	21,0	23,0	34,0	0,5	88.300	43.000		
	Widalifidill	ر د , د	21,0	23,0	34,0	0,3	00.300	75.000		
		II C	NILES	Vo chtishoid	Tomonoustum	Vo shtiet oid	Coolland			
Lavatoren influent		H ₂ S			Temperatuur		Snelheid			
	Comidald	ppm	ppm	%	°C	[g/m³]	m/s			
	Gemiddelde	2,8	6,2	99,3	14,4	12,6	6,8			
	Maximum	9	11	99,9	20	17,1	7,1			
	Minimum	0	0	97	11,7	10,6	6,2			

Demo site wastewater treatment technology Leeuwarden

Organisation:

The Frisian water authority Wetterskip Fryslân

Description of the site

Wetterskip Fryslân has build a demo site at the waste water treatment plant (WWTP) Leeuwarden in close collaboration with Wetsus. The demo site is a research site for wastewater treatment technology. This is unique in the Netherlands and in the world. The Demo site in Leeuwarden facilitates companies, research institutions and water authorities to do quick and efficient research in order to promote the development of innovative and sustainable wastewater purification technologies. At the demo site all the existing process flows of a WWTP, such as influent, effluent, sludge, have been made available at a central research location. In other words, 'plug & play'. The research equipment can be easily connected to the piping. There is room for at least four large containers (40 ft) for technological research. In the portacabin small experiments and analyzes can be done.

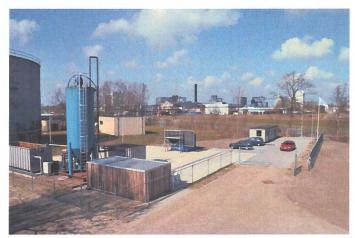


Photo 1 and 2: "Plug & Play" at the demo site wastewater treatment technology Leeuwarden

Facilitating research can eventually lead to cost savings and / or improve the functioning of the sewage treatment plants. Water Technology companies can move faster to market launch and sales of a newly developed technology. The Demo Site Leeuwarden can quickly lead an idea into a successful and profitable technology. The Demo site was funded by Wetterskip Fryslân and co funded by the European Regional Development Fund (ERDF) and the Ministry of Economic Affairs. Summurizing the benefits of the demo site for waste water and sludge:

- 1. To facilitate external and internal research
- 2. To stimulate and support innovation
- 3. To realize fast application of efficient and sustainable technology
- 4. To learn from applied research

Every year, Wetterskip Fryslân purifies hundred million cubic meters of wastewater (about 3 million trucks) in 28 wastewater treatment plants (WWTPs) in Fryslân. Leeuwarden is the largest sewage treatment plant of Friesland. Every day 40,000 m3 of waste water is being purified. The wastewater comes from homes and industries. The total waste water stream is equal to 200,000 households.

WWTP Leeuwarden is an expert in extracting energy from wastewater. Two large digesters are converting sludge into biogas. Wetterskip Fryslân is using this biogas for the generation of electricity with two gas engines. The excess residual heat released during the production of electricity supplies water board in the neighboring elderly home Greunshiem.

In December 2015 a new pilot project has been started with transporting and selling biogas to nearby organisations Fier and Wetsus on the Watercampus.

Photo 3: Biogas purification station; © Van der Wiel bv)

What is innovative about it?

The demo site Leeuwarden is an innovative research facility which allows testing of novel wastewater treatment technologies in order to identify and mitigate challenges before full-scale application. Participants will also be introduced to several innovative research and demonstration projects that have been carried out at the demo site during the visit, among others:

- tertiary treatment with algae,
- destruction of sludge by thermal treatment (thermal pressure hydrolysis)
- piloting a fine sieve to remove non-dissolved constituents from raw influent
- making bioplastics from sludge

Moreover the biogas network project is a marvelous innovative showcase and unique in the Netherlands.

For more information contact:

Yede van der Kooij Mba BSc

Wetterskip Fryslân M: 06-46173100 T: 058-292 2222

E: yvanderkooij@wetterskipfryslan.nl

TABOVATION /PILLOT

Wetterskip Fryslân Postbus 36 8900 AA Leeuwarden Bezoekadres: Harlingerstraatweg 113 Leeuwarden Ir. Sybren Gerbens

Wetterskip Fryslân M: 06-46172411 T: 058-292 2222

E: sgerbens@wetterskipfryslan.nl